AVmodels.ru - информация о моделях самолетов, моторах, аппаратуре радиоуправления
 
AVmodels.ru - модели самолетов
 

авиамоделизм - мир увлеченных

Главная
Авиамодели
Двигатели
Топливо
Воздушный винт
Статьи
Обратная связь
Каталог ссылок
Барахолка
Фотогалерея
Форум

Специальное место)

  Главная > Двигатели > А вместо сердца – пламенный мотор

Глушители шума

Глушители на микродвигателях применяют довольно давно - первые попытки снизить уровень шума работающего мотора предпринимались еще в середине прошлого века. В настоящее время большинство спортивных классов моделей должны быть оснащены эффективными глушителями, уменьшающими шум мотора на максимальных оборотах до уровня 96 Дб. По правилам FAI, замер шума должен производиться специальными измерителями уровня шума, на настоянии 3 метра от оси модели со стороны выхлопного окна двигателя, при этом модель должна находиться на бетонной или земляной площадке (взлетной полосе)

Конструкции и формы глушителей очень разнообразны, так же, как и материалы для их изготовления. Промышленные глушители обычно изготавливаются из алюминиевых сплавов литьем под давлением, в кокиль или в выплавляемые формы. Встречаются глушители, изготовленные из тонкой листовой стали, и даже из углепластика. Расположение глушителя определяется направлением выхлопного окна двигателя. Чаще всего, глушитель располагается сзади или сбоку от двигателя. При заднем расположении глушителя, он соединяется с картером двигателя либо жестко, с помощью металлического патрубка, либо через гибкий термостойкий силиконовый переходник, позволяющий удобно расположить глушитель внутри модели. При боковом расположении выхлопного окна обычно применяется жесткое соединение глушителя и картера.



Различные конструкции глушителей для микродвигателей

При конструировании простых глушителей редко используется математика. Скорее - здравый смысл. Руководствуются при этом следующими предпосылками:

  • обычный глушитель предназначен только для уменьшения шума, но не для увеличения мощности двигателя;
  • основная шумовая компонента (акустический хлопок) возникает в момент начала фазы выхлопа (механические шумы двигателя не рассматриваем), и чем быстрее происходит "прорыв" отработанных газов из выхлопного окна в свободную атмосферу (в окружающий воздух), тем выше уровень шума.

Следовательно, если обеспечить не прерывистое "хлопающее", а плавное истекание в атмосферу выхлопных газов, то, в идеале, можно свести уровень шума выхлопа к нулю.

Этого можно добиться несколькими путями:

  • "зажать" сечение выхлопного окна, и увеличить время истекания газов, но при этом резко теряется мощность двигателя за счет ухудшения внутренних газодинамических процессов;
  • обеспечить условие плавного расширения выхлопных газов после выхлопного окна - просто установить конус-раструб (мегафон) на пути выхлопных газов, и чем длиннее будет этот конус, тем лучше;
  • "выплевывать" выхлопные газы в какой-либо замкнутый объем (полость), изолированный от атмосферы (но очень скоро давление внутри этой полости возрастет настолько, что будет препятствовать процессу выхлопа);
  • найти компромисс между этими вариантами, т.е. обеспечить плавный процесс выхлопа в замкнутый объем (глушащий ресивер или камеру), который соединить с атмосферой маленьким отверстием, через которое и будет стравливаться избыточное давление.

Очевидно, что чем больше будет объем глушащей камеры, тем меньшее влияние он будет оказывать на процесс выхлопа, и тем меньше будут потери мощности двигателя. Следует учесть так же, что для нормальной работы двигателя с подобным глушителем, сечение выходного отверстия глушителя должно обеспечить полное стравливание выхлопных газов из ресивера в атмосферу за время одного оборота коленчатого вала.

Опыт показывает, что минимальный объем глушителя, который позволит эффективно снизить уровень шума без существенного уменьшения мощности мотора должен быть, по крайней мере, в 20 раз больше рабочего объема двигателя (для 10 кубового двигателя это примерно 200 куб.см), при этом сечение выходного отверстия в глушителе должно быть примерно в 3-5 раз меньше сечения выхлопного окна в цилиндре. Конечно, это усредненные цифры, которые могу сильно варьироваться.

Очень хорошо "работает" выходное отверстие, которое само состоит из нескольких дырочек еще меньшего диаметра. Именно так и строятся многокамерные глушители: объем первой глушащей камеры соединяется с объемом второй камеры не одинственным отверстием, а несколькими мелкими отверстиями, которые, в принципе, можно заменить мелкоячеистой сеткой или длинной трубкой с глухим торцом, но с множеством мелких отверстий в цилиндрической стенке.

Очень часто глушитель используется еще и для создания избыточного давления в топливном баке, что позволяет улучшить стабильность работы двигателя на всех режимах. Для этого герметично закрытый топливный бак соединяют трубкой с глушителем.

К давлению наддува мы еще вернемся при рассмотрении систем питания двигателей.

Следует особо подчеркнуть, что применение любого глушителя уменьшает мощность двигателя. Это не относится лишь к специальным выхлопным устройствам, не совсем верно называемым резонансными глушителями, и которые позволяют модифицировать, изменить характер кривой внешней характеристики двигателя, приблизив ее к идеализированной кривой индикаторной мощности. Но такие устройства, по своей сути не являются глушителями, т.к. не выполняют основную их функцию - снижение шума работающего мотора, а зачастую даже увеличивают его.

Резонансные глушители применяются исключительно на спортивных моторах, предназначенных для установки на гоночные, скоростные или рекордные модели, и расчитаны они для достижения максимальных мощностей и оборотов двигателя, чаще всего в ущерб стабильной работы на переходных режимах.

Применяют две основные разновидности резонансных глушителей: полуволновые резонансные трубы, и четвертьволновые резонансные муффлеры (маффлеры), от английского muffler - глушитель, сурдинка.


Двигатель с полуволновым резонансным глушителем (дудкой)


Двигатель с четвертьволновым муффлером

Основной принцип работы резонансных глушителей заключается в том, что внутри них возникают сложные акустические колебания, которые при определенных оборотах коленвала приобретают характер стоячих волн, увеличивающих давление в плоскости выхлопного окна и внутри объема цилиндра непосредственно перед окончанием фазы выхлопа (перед закрытием окна поршнем). Это, во-первых, препятствует вытеканию из цилиндра свежей порции горючей смеси, а во-вторых, приводит к ее "утрамбовке", что эквивалентно увеличению наполнения цилиндра горючей смесью, а следовательно, и эффективной мощности двигателя.

Резонансные трубы или дудки имеют вытянутую веретенообразную форму, но условно состоят их пяти частей цилиндрической или конусной формы, плавно переходящих одна в другую. Изготавливаются дудки из тонкостенных алюминиевых труб чаще всего раскаткой на фасонных оправках.


Резонансная труба.

Ориентировочные соотношения основных размеров для расчета резонансной трубы: L3 = 0-0,4L2, L4 = 0,15-0,3L7, d3 = 0,3d1, d2/d1= 1,6-3,0 Общая длина трубы от кромки выхлопного окна до середины обратного конуса Lд ~ 34f/n, где f - продолжительность фазы выхлопа, в градусах, n - заданное число оборотов двигателя, в об/мин.

Красной линией показан профиль сечения реальной дудки.

Первая, цилиндрическая часть, непосредственно присоединяемая к выхлопному патрубку двигателя (выпускная труба) служит для точной настройки резонансных характеристик выпускной системы в целом.

Вторая часть, прямой конус, диффузор (иногда эту часть называют - мегафон), обеспечивает условие плавного расширения выхлопных газов, что необходимо для уменьшения турбулентных потерь, формирования плоского фронта расширяющихся газов, и некоторого снижения шума.

Третья часть, центральный цилиндр, служит не только для дальнейшего расширения выхлопных газов, но так же, как и выпускная труба, участвует в "настройке" дудки в резонанс.

Четвертая часть, обратный конус, или конфузор, служит отражательной стенкой для волны выхлопных газов.

Пятая, цилиндрическая часть (выходная труба) глушителя соединяет полость глушителя с атмосферой.

Работает резонансная труба следующим образом. В момент начала фазы выхлопа из цилиндра, через выхлопное окно и выпускную трубу в полость глушителя устремляется поток отработанных газов. В диффузоре этот поток расширяется, теряет скорость и начинает интенсивно остывать, что приводит к еще большей потери потенциальной энергии газового потока. Фронт давления, движущийся перед фронтом расширяющихся выхлопных газов, проходит центральный цилиндр глушителя, достигает стенок конфузора, отражается от них, и начинает двигаться в обратном направлении. Через определенное время этот фронт давления попадает снова в диффузор, затем в выхлопную трубу, и к моменту завершения фазы выхлопа, через еще открытое выхлопное окно, проникает обратно в цилиндр двигателя, увеличивая в нем эффективное давление.

Таким образом, фронт давления совершает колебательные движения, период которых определяется формой и геометрическими размерами резонансной трубы. Как уже было сказано, при совпадении частоты резонанса трубы и частоты вращения коленвала возникает общий резонанс системы и стоячая волна давления, длина которой, грубо говоря, в два раза больше длины резонансной трубы. Поэтому такие системы и называют полуволновыми резонансными трубами.

При этом сами выхлопные газы не прекращают своего движения в сторону выходной трубы и далее в атмосферу, а лишь изменяется их скорость и характер движения - из пульсирующего оно переходит в поступательное. Никакого возвратно-поступательного движения газовой смеси в области выхлопного окна нет, точно так же, как нет и перемещения воздуха при распространении в нем обычных звуковых колебаний.

Выхлопные резонансные трубы (как и любая другая колебательная система) имеют еще один важный параметр - добротность. Добротность дудки определяет тот диапазон оборотов двигателя, в котором эта дудка может работать, как принято говорить - включается, т.е. входит в резонанс с двигателем. Чем выше добротность дудки, тем уже диапазон оборотов двигателя, в котором дудка может запеть, но тем большую прибавку к мощности двигателя можно ожидать от этого устройства. Обычно дудка настраивается на частоту, несколько превышающую частоту вращения коленвала двигателя при работе без глушителя.

Вхождение в резонанс такой системы происходит в два этапа: сначала двигатель как бы тянет за собой дудку, постепенно увеличивая частоту общих колебаний системы двигатель - резонансный глушитель. После того, как эта частота становится близка частоте резонанса дудки, она включается в работу, и начинает "подтягивать" обороты двигателя уже к частоте своего резонанса, т.е. раскручивает его.

Добротность дудки во многом зависит от угла раскрыва обратного конуса: чем больше этот угол, тем большую добротность будет иметь выхлопная система. Если обратный конус (конфузор) заменить простой стенкой (блендой), то такая труба будет иметь максимальную добротность, т.е. сможет работать только на каких-то одних, строго определенных, оборотах коленвала двигателя, но будет выпадать из резонанса при малейших изменениях условий работы - нагрузки, температуры воздуха, состава горючей смеси, и т.д. и т.п.

Сразу скажу: невозможно создать такой глушитель, который бы увеличивал мощность двигателя во всем диапазоне оборотов коленвала. Законы природы и физики не позволяют сделать этого. Можно лишь изменить характер зависимости мощности мотора от оборотов коленвала. Следовательно, чем большую пиковую мощность развивает мотор на максимальных оборотах благодаря применению резонансного глушителя, тем меньшую мощность он будет способен отдать во всех других режимах работы.

Пиковые дудки, предназначенные для экстремальных режимов работы двигателей, имеют высокую добротность, в силу чего очень капризны в настройке и в работе.

Расчет, изготовление и настройка такого устройства дело весьма кропотливое, и не поддающееся простому математическому описанию. На сегодня не существует законченной теории работы резонансных глушителей, позволяющей выполнять прикладное моделирование резонансных выхлопных труб по заданным параметрам. Все формулы, размеры, параметры и оценки таких устройств, встречающиеся в литературе, являются эмпирическими, т.е. полученными путем длительных экспериментов. Учитывая, что в работе участвует не только сама резонансная труба, но и двигатель, приходится принимать во внимание очень многие факторы - от размеров и материала самой трубы и каждой отдельной ее части, до степени сжатия двигателя и длительности фаз всех процессов, происходящих внутри него. Кроме того на характер работы резонансной трубы оказывают большое влияние и внешние условия, прежде всего - атмосферное давление, температура и влажность воздуха.

В интернете есть несколько сайтов с описанием методик расчета и настройки резонансных труб. Одно из лучших автоматизированных решений расчета резонансных труб можно увидеть на сайте Мартина Хепперле (Martin Hepperle), посвященном гоночным радиоуправляемым моделям класса F3D. (543)

Разумеется, эта программа предназначена прежде всего для демонстрации общих зависимостей резонансных свойств дудки от параметров двигателя и его рабочих оборотов, и не может претендовать на роль точного математического инструмента.

Муффлер существенно отличается от дудки не только размерами, но и характером протекающих внутри него процессов. Выпускная труба муффлера гораздо длиннее, чем у дудки, она проходит внутри всего глушителя, и оканчивается на небольшом расстоянии от обратного конуса, но не касается его. Над выпускной трубой, и аксиально (соосно) ей, расположен такой же длинный центральный цилиндр, сзади переходящий в конфузор, а вместо прямого конуса (диффузора) у муффлера простая стенка. Конфузор муффлера, как и дудки, заканчивается выходной трубой малого диаметра.


Муффлер

Размеры хорошо зарекомендовавшего себя в работе муффлера для двигателя 3,5 куб.см для гоночной модели F3D/2 ("маленькая" гонка): L1=16 мм, L2=9 мм, L3=14 мм, L4=21,5 мм, L5=29 мм, d1=14 мм, d2=3 мм , d3=8,5 мм. Материал - алюминиевые трубы с толщиной стенок 0,8-1 мм.

Особенность работы муффлера состоит в том, что стоячая волна внутри него как бы сложена в четыре раза: первое отражение фронта давления происходит от конфузора, по центральному цилиндру фронт движется уже в обратном направлении к передней стенке, затем, отразившись от нее снова возвращается к конфузору, и только после третьего отражения вновь попадает в выпускную трубу, по которой и попадает в цилиндр перед окончанием фазы выхлопа.

Муффлеры имеют несколько меньшую добротность, чем дудки, в силу чего не могут обеспечить пиковых приростов мощности, но при этом они гораздо проще в настройке и менее критичны в работе.

В последние годы моделистами стали широко использоваться многокамерные глушители, которые, с большой натяжкой, называют резонансными. Все камеры (обычно - две или три) этих глушителей расположены в одном корпусе, и внешне составляют единое целое. Первая камера глушителя по форме и конфигурации обычно напоминает муффлер или дудку, но имеет меньшую добротность и более низкую частоту настройки, что не позволяет получить максимального прироста мощности, но несколько увеличивает мощность на оборотах, чуть выше средних. Вторая (и третья) камеры, собственно и является глушителем, снижающим шум двигателя. В целом, подобные устройства довольно эффективно снижают уровень шума мотора, без существенного уменьшения его мощности.

Такими глушителями обычно комплектуются двигатели для пилотажных моделей и вертолетов. Рассчитывать на то, что применение подобного устройства значительно увеличит мощность или улучшит другие характеристики мотора, не имеет смысла.

И.В. Карпунин (aka Glider)

Обсудить на форуме

Ваша реклама



Copyright © 2007-2024 г. «AVmodels.ru»
Использование материалов сайта разрешается только с указанием ссылки на первоисточник.

Top.Mail.Ru